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The promise of quantum computers hinges on the ability to scale to large system sizes, e.g., to
run quantum computations consisting of more than 100 million operations fault-tolerantly. This in
turn requires suppressing errors to levels inversely proportional to the size of the computation. As a
step towards this ambitious goal, we present experiments on a trapped-ion QCCD processor where,
through the use of fault-tolerant encoding and error correction, we are able to suppress logical error
rates to levels below the physical error rates. In particular, we entangled logical qubit states encoded
in the [[7, 1, 3]] code with error rates 9.8× to 500× lower than at the physical level, and entangled
logical qubit states encoded in a [[12, 2, 4]] code with error rates 4.7× to 800× lower than at the
physical level, depending on the judicious use of post-selection. Moreover, we demonstrate repeated
error correction with the [[12, 2, 4]] code, with logical error rates below physical circuit baselines
corresponding to repeated CNOTs, and show evidence that the error rate per error correction cycle,
which consists of over 100 physical CNOTs, approaches the error rate of two physical CNOTs.
These results signify an important transition from noisy intermediate scale quantum computing to
reliable quantum computing, and demonstrate advanced capabilities toward large-scale fault-tolerant
quantum computing.

Quantum computers have the potential to solve impor-
tant classically-intractable problems, however doing so
requires improving error rates well beyond those of the un-
derlying physical hardware. The development of quantum
error correction and fault-tolerant quantum computing
was a major theoretical breakthrough that paved the way
for the implementation of reliable quantum computers [1–
7]. Without quantum fault-tolerance, there is little to no
indication that quantum computers can solve important
practical problems that are outside the reach of modern
day supercomputers and machine learning [8, 9]. The ex-
perimental challenges remain significant, as fault tolerance
requires that physical error rates be sufficiently low before
the overhead of error correction leads to an improvement
over physical, non-fault-tolerant operations [3, 5–7, 10],
but steady progress has been made across several differ-
ent platforms. In fact, several experiments have shown
indications of physical error rates approaching this im-
portant so-called threshold [11–14], while others have
demonstrated operations on multiple logical qubits [15–
17]. However, to the best of our knowledge none of these
experiments have demonstrated logical error rates better
than the physical error rates— a notable exception being
a demonstration of Bell correlations that are stronger
than physical correlations [18].

Our goal is to demonstrate the transition from noisy
intermediate scale quantum computing to reliable quan-
tum computing [19, 20], through the co-optimization of
hardware and software with a present-day commercial
quantum processor. Namely, we aim (1) to show convinc-
ingly a large separation between logical and physical error
rates, (2) in a setting where all single circuit faults are
corrected, while (3) using logical circuits representative of

what would be used for computation, e.g., the preparation
or use of logical entanglement.

To this end, we demonstrate several fault-tolerant proto-
cols in a commercial trapped-ion quantum charge-coupled
device (QCCD) processor [21] and show that the observed
logical error rates are conclusively lower than the error
rates for their (unencoded) physical counterparts.

I. METHODOLOGY

Our approach largely builds on Gottesman’s proposal
in Ref. 22. Namely, we benchmark complete quantum
circuits [23], and contrast the error rates of the classi-
cal outputs of these circuits—a comparison between the
outputs of the unencoded physical circuit to that of the
corresponding fault-tolerantly encoded circuit on the same
hardware. We deviate from Gottesman’s proposal in two
ways – we consider a different metric for the comparison of
quantum circuits, and we allow for slightly more general
state preparations.

The metric considered in Gottesman’s proposal is the
total variation distance between the output distribution
of the ideal circuit and the experimental circuits (encoded
or otherwise). For our proposal we also consider the sta-
tistical distance between outputs, but we add classical
processing of the measurement outputs so that it is pos-
sible to determine success or failure for each individual
run of the experiment. For example, when preparing the

state |00⟩√
2
+ |11⟩√

2
and measuring both qubits in either the

Z or the X basis at random, we consider success if both
outcomes agree and failure if they disagree. Due to the ad-
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ditional classical processing (i.e., comparing the two bits
and reporting only their parity) this metric is generally
weaker than the distance proposed by Gottesman, but
it simplifies the analysis and yields estimates with much
lower uncertainty (an important consideration in an exper-
imental setting with finite resources). Moreover, in many
cases of interest, experiments of this type allow for direct
estimates of the state fidelity through the measurement
of the parity of the stabilizer group elements [24, 25].

We also deviate from Gottesman’s proposal by allowing
that the qubits be prepared in some finite set of fixed
states instead of only the |0⟩ state, since it is natural to
consider specialized preparations of resource states in the
encoded setting. In the unencoded setting the preparation
will reduce to preparation of qubits in the |0⟩ state and
application of various gates.

II. HARDWARE PLATFORM

All reported demonstrations here were performed on
Quantinuum’s H2 trapped-ion processor. The device was
recently reported on in detail in Ref. 21, and we give a
brief overview here.
H2 is a shuttling-based trapped-ion QCCD device [26,

27]. H2 has all the necessary ingredients for state-of-the-
art quantum error correction experiments: high-fidelity
state-preparation and measurement (SPAM) with an er-
ror rate of 0.15%, two-qubit gates with an error rate of
0.14(1)%, long range connectivity (a key enabler for run-
ning some of the circuits described here), and mid-circuit
measurement and reset with crosstalk errors ≤ 2× 10−5.
The H2 processor is commercially available through

both Quantinuum [28] and Azure Quantum [29]. All
experiments in Sections III B and IV were submitted
through the Azure Quantum software stack using the
Quantum Intermediate Representation (QIR) [30]. For
the experiments described in Section IV, additional com-
piler customization were applied, as described in that
section in more detail.

III. IMPROVED LOGICAL ENTANGLEMENT

Entanglement is a quantum hallmark, and over the
last 20 years the preparation and measurement of Bell
states has been a baseline demonstration for credible
physical implementations of quantum computers. It is
natural to consider the same baseline in the context of
logical qubits [31], as the complexity of the fault-tolerant
preparation already becomes apparent. Several recent
experiments have demonstrated the preparation of logical
Bell-pairs in quantum error correction codes [16–18], and
although these results are remarkable in their own right,
only one of them [18] has demonstrated a logical error rate
modestly better than physical error rate. Here we describe
how much lower logical error rates can be obtained using
the [[7, 1, 3]] Steane code and a [[12, 2, 4]] code.

A. Steane code

We first present results using the [[7, 1, 3]] Steane
code [2] to prepare a high-fidelity Bell state. The Steane
code, or distance-three color code, has been used in sev-
eral demonstrations of logically encoded circuits [12, 16–
18, 32, 33], partially because of its relatively low space-
time overhead, its simple preparation and measurement
protocols due to its CSS nature, and all single and two
qubit Clifford gates being transversal for the code.

1. Circuits

The circuit components used to generate a high-fidelity
Bell state were previously demonstrated in Refs. 12 and
18. The logical program to prepare a logical Bell resource
state using the Steane code is in Fig. 1. The preparation
includes encoding circuits to initialize two logical qubits
to |0⟩, transversal single and two-qubit Clifford gates,
flagged syndrome extraction, and destructive logical mea-
surements. Each logical qubit has seven data qubits and
three ancilla qubits, leading to the experiments having a
total of 20 physical qubits.
The encoding circuit is made fault-tolerant using a

scheme by Goto [34] which involves a non-fault tolerant
encoding circuit of |0⟩ followed by a verification step where
an ancilla qubit measures the logical Z operator. Upon
failure to verify the preparation a logical |0⟩ state, the
qubits can be conditionally reset and the fault-tolerant
preparation can be re-attempted in a repeat-until-success
fashion (as seen in Ref. 12) or pre-selected upon verifi-
cation. For these experiments, we chose to repeat the
preparation of the |0⟩ up to three times. Once the |0⟩
states are verified, the Goto scheme ensures that state
preparation results in at most weight-one faults due to
any single faulty gate.

After both logical qubits are prepared in |0⟩, we apply a
transversal Hadamard to one of the logical qubits, followed
by a transversal CNOT between the two logical qubits.
Ideally, this circuit would produce (|00⟩+ |11⟩)/

√
2.

We attempt to verify this by following the CNOT with
one round of flagged syndrome extraction on each logical
qubit based on a scheme by Chao and Reichardt [35] in
which three syndromes are measured in parallel. The
main difference compared to the original scheme is that
we do not follow the flagged syndrome measurements with
a conditional set of unflagged syndrome measurements.
This is because we are treating the Bell state as a fixed
resource state independent of the computation, and much
like the the logical |0⟩, pre-selection of such resources has
no negative impact on scalability [1, 36, 37].

After running syndrome extraction, logical single-qubit
transversal gates are applied to measure in appropriate
logical Pauli bases, and then we destructively measure
the data qubits. We measure both qubits in the logical
X, Y , and Z bases, which can be performed transver-
sally in the Steane code. The destructive measurements



3

of data qubits not only allows one to determine logical
outcome but can also be used to determine syndromes.
At the end of each destructive logical measurement, these
syndromes are used to generate a correction to the logical
outcome using a lookup table decoder. These corrected
outcomes are determined by running the decoder during
the hybrid quantum/classical program on the device and
not determined afterwards. The lookup table is relatively
simple and the same one used in Ref. 12. Syndromes
are decoded independently for each logical measurements.
Further improvements could be made by incorporating
experimental bias noise in the construction of the decoder,
as well as decoding over all syndromes generated by both
logical qubits [17, 38–40].
The [[12, 2, 4]] code also studied in this work does not

admit for a transversal fault-tolerant Y eigenbasis mea-
surement, so to facilitate comparison we focus on the error
rate for Bell experiments where we measure only X and
Z parities, and denote it Exz. Simply put, Exz is defined
as the number of “incorrect” measurement results divided
by the total number of trials. Only measuring in the X
and Z basis is related to measuring the stabilizers of the
target state. These measurements can provide a bound
on the fidelity of the operation, but since we can also
measure in the Y basis when using the Steane code, we
also report estimates of the process fidelity in Appendix C.
The derived process fidelities give a more conservative es-
timate of the overall performance of the Bell preparation
protocol; however, the process fidelities paint a similar
picture to the estimates given by Exz, where the encoded
circuits are statistically significantly out performing the
results of the unencoded circuit analog.

Besides evaluating Exz in the presence of quantum error
correction, we also re-analyze the corrected outcomes cal-
culated by the device by excluding any results for which
non-trivial syndromes were recorded during the destruc-
tive measurement phase and the evaluate the Steane code
as a quantum error detecting (QEC) code. This mode of
operation does not satisfy the requirement that all single
faults must be corrected, but allows us to evaluate the
probability of the environment applying pure logical errors
(thus serving as an upper bound on QEC performance)
as well as evaluate the rejection rate the cost of using the
Steane code in a QEC manner and whether that cost is
worth paying to further suppress noise.

As described in Section I, we compare Exz of physical
(unencoded) circuits and logical circuits. The physical
circuits are identical to what is described in Fig. 1, with
the exception that no syndrome extraction, pre-selection,
or post-selection is applied. Since H2 has four gate zones,
four copies of the physical circuits were executed in paral-
lel for each run, totaling eight physical qubits per program.

2. Experimental results

The experimental results for the both the Steane code
and physical level Bell state preparation are summarized

pre-select

|0⟩

|0⟩

H Syn

Syn A

A

FIG. 1. High-level depiction of the logical program of the Bell
resource-state preparation using the Steane code. The blue
dashed box indicates the pre-selected portion of the circuit
where both the verification of |0⟩ and trivial measurement
results of syndrome extraction rounds (the boxes labeled Syn)
are used to verify the creation of a resource state. The experi-
ments are analyzed using error correction (with pre-selection)
or error detection (with pre- and post-selection) independently.
Post-selection accepts experiments where the syndrome in-
ferred from the logical measurements (red dashed boxes) is
trivial.

in Table I and Fig. 2 (see Appendix A for details of the
statistical analysis and Appendix C for additional data).

We ran a total of 411, 600 unencoded experiments (four
Bell state preparation and measurement circuits per pro-
gram). When restricted to X and Z basis experiments,
274, 400 experiments were ran at the unencoded level,
respectively. For both the unencoded and encoded set of
experiments, we ran an equal number of sub-experiments
measuring X, Y , and Z correlations. Of the 411, 600
physical experiments, 1, 897 measured the incorrect par-
ity. In particular, the wrong parity was measured 572
out of 137, 200 times for X parity, 530 out of 137, 200
times for Y parity, and 795 out of 137, 200 times for Z
parity. This results in an error rate Exz = 0.50%+0.03%

−0.03%.

Looking at the outcomes for separate bases (see Table IV),
it is apparent that the Z measurements experience an
increased error rate of approximately 0.6% compared to
about 0.4% for the X and Y . This difference may arise
due to biased noised in the two-qubit gates.
For the logical experiments with error correction and

pre-selection, 12, 100 experiments were ran for each of X,
Y , and Z correlations, for a total of 36, 300 experiments.
About 9, 000 shots were pre-accepted for each basis re-
sulting in a pre-acceptance rate of about 75%. Out of
the 9, 025 pre-accepted X correlations experiments, 337
non-trivial syndromes were measured and 9 experiments
resulted in the wrong parity measurement. For the 9, 082
pre-accepted Y correlation experiments, 417 non-trivial
syndromes were measured and 8 incorrect parity mea-
surements were made. For Z correlations, of the 9, 010
pre-accepted experiments, 309 had non-trivial syndromes
and 0 measurements resulted in measuring the wrong
parity.
Post-selecting on non-trivial syndromes (so no error

correction is performed, only error detection), the total
acceptance rate goes from ≈ 75% to ≈ 72%, and 0 in-
correct parity outcomes are observed for the X and Z
correlations out of 8, 688 and 8, 701 post-accepted exper-
iments, respectively. For the Y , only 2 measurements
out of 8, 665 experiments accepted in post-selection (post-
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FIG. 2. Results for the Bell state preparation in the [[7, 1, 3]]
Steane code comparing physical level, error correction, and
error detection experiments. There is a statistically significant
separation between the physical and encoded results given the
errors bars, which indicate 95% confidence intervals.

accepted) resulted in a measurement of the wrong parity.
Based on these observations, the error rates Exz

were determined to be 0.50%+0.03%
−0.03%, 0.05%

+0.04%
−0.03%, and

0.001%+0.013%
−0.001% for the physical experiments, logical ex-

periments with error correction, and logical experiments
with error detection, respectively, as illustrated in Fig. 2.
This corresponds to a statistically significant reduction
in the observed error rate by factors of 9.8 and 500 for
the error corrected and the error detected experiments
respectively.

B. Carbon code

We also entangled two pairs of logical qubits using
a [[12, 2, 4]] CSS code, which we nickname the Carbon
code [41], and perform Bell correlation experiments with
this entangled state. As a CSS code, Carbon has transver-
sal CNOT and H gates, which immediately enable the
preparation of a maximally entangled logical Bell state.
However, the transversal CNOT gates create entangle-
ment between qubit blocks, instead of entanglement within
the block. For that reason, the Bell correlation experi-
ment now involves two logical Bell states, as illustrated
in Fig. 3.

1. Circuits

The Carbon code circuit for logical Bell state prepara-
tion requires 30 physical qubits (24 data qubits for the
two blocks and 6 ancillas). While it is possible to fault-
tolerantly prepare each block in tensor products of X or
Z eigenstates and then prepare Bell states by applying

pre-select

|+⟩
|+⟩

|0⟩
|0⟩

B

B

A

A

FIG. 3. Effective logical circuit for Bell state preparation using
the [[12, 2, 4]] Carbon code. The top and bottom pair of lines
correspond to separate blocks. The pre-selected portion of the
circuit (blue dashed box) include verification measurements
at the physical level which are used for pre-selection (not
shown). When post-selection is performed, it is based only
on the syndrome information in the transversal measurements
(red dashed boxes), and a separate decision is made for each
code block. The logical observables A and B can be either X
or Z independently, but for the experiments discussed here
we focus on the scenario where A = B.

the transversal CNOT between them, it is more favorable
to distribute the verification measurements throughout
the Bell state preparation circuit (not shown). These
verification circuits are tailored to the Bell state prepa-
ration, and can avoid measuring all stabilizer generators,
focusing instead of simply detecting the propagation of
failures into high weight Pauli errors. This simplification
improves the fidelity of accepted state preparations in the
experiments at the cost of mildly increasing the rejection
rate.

We emphasize that the pre-selection criteria only looks
to detect correlated error propagation in the unitary prepa-
ration circuits, as is customary in fault-tolerant stabilizer
state preparation circuits. Most importantly, we do not
measure the Bell correlations non-destructively in the
preparation circuit, nor do we measure all stabilizer gen-
erators for the state.

The X and Z parities for each Bell pair can be obtained
by measuring each block transversally, measuring both
qubits within each block in the same basis [42]. As in
Section IIIA, no error correction is performed between
state preparation and measurement, but syndrome infor-
mation from the transversal measurements allows us to
detect errors nonetheless. Because the Carbon code has
distance 4, while we can correct all weight 1 errors in each
block, we cannot correct all weight 2 errors. However, we
can detect all errors of weight up to 2, correct some of
them with high probability, and reject the ones we cannot
correct with high probability. Thus, the Carbon code
experiments can have two modes of operation: an error
correction mode, and an error correction and rejection
mode. Importantly, error correction is performed in both
modes of operation.

In error correction mode, we only perform pre-selection
of state preparation, and do not allow any post-selection
based on the syndrome information. Every experimen-
tal run that is accepted in pre-selection (or pre-accepted)
yields logical experimental outcomes that may or may not
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runs pre-accepted post-accepted corrections errors Exz error rate gain

unencoded baseline 274, 400 — — — 1, 367 0.50%+0.03%
−0.03% —

encoded, pre-selection only 24, 200 18, 035 — 646 9 0.05%+0.04%
−0.03% 9.8

encoded, pre- and post-selection 24, 200 18, 035 17, 389 — 0 0.001%+0.013%
−0.001% 500

TABLE I. Summary of experimental results for the preparation of Bell resource states using the [[7, 1, 3]] Steane code and the
corresponding circuit composed of physical qubits instead of logical qubits. Note this table only includes data for the X and Z
basis measurements. Additional data including calculated process fidelities are given in Appendix C. We define “gain” to be the
error rate of the physical circuits divided by the error rate of the corresponding logical circuit, while “corrections” refers to the
number of pre-accepted experiments where a non-trivial syndrome was observed.

be corrected based on syndrome information. Decoding is
performed by table look up after collecting the experimen-
tal data, and since we assume errors are independent and
identically distributed, the table is populated sequentially
by examining Pauli errors of increasing weight. If two
Pauli errors of a particular weight have the same syn-
drome and their product is not in the stabilizer group, we
choose arbitrarily which correction we associate with that
syndrome, knowing that, for that particular syndrome
we only make the right correction a constant fraction
of the time. These resulting logical outcomes are then
categorized as failures or successes based on the expected
outcomes of a noiseless circuit (i.e., having parity outcome
+1 for each Bell pair).

In the second mode of operation, we perform pre-
selection of state preparation as before, but we also post-
select on syndrome outcomes. Post-selection is based on
the expected quality of decoding decisions. We modify the
decoder table construction so that if two Pauli errors of a
particular weight have the same syndrome and their prod-
uct is not in the stabilizer group, the syndrome is added
to the rejection set (so those outcomes are post-rejected),
otherwise it is added to the acceptance set. For syndromes
in the acceptance set, each syndrome is associated with
the lowest weight Pauli error with that syndrome in the
decoding look-up table [43].

The advantage of post-selecting on some syndrome out-
comes for even distance codes is that it effectively boosts
the distance of the code from d to d+1, in the sense that
errors of weight d

2 do not cause logical errors anymore (as
those are rejected in post-selection) [44]. Although post-
selection is not scalable in a strict sense, with low rejection
rates one can run relatively deep circuits and achieve sig-
nificant improvements to the logical error rate [44, 45].
The key observation is that the post-rejection rate is sec-
ond order in the physical error rate, since weight 1 errors
are corrected instead of rejected, and the constant factor
is improved by correcting any unambiguous syndrome of
an error with weight 2.

For the experiments here, the pre-rejection rates are a
limiting factor, since the pre-rejection rate is first order in
the physical error rate. However, with state preparation
factories in a larger system, pre-selection is scalable, and
post-selection becomes the dominant source of overhead.

2. Experimental results

We ran a total of 16,000 unencoded experiments, and
22,000 encoded experiments [46]. In both cases half of the
runs measured X parities, and half of the runs measured
Z parities.

For the unencoded experiments, out of the 16,000 runs,
125 yielded the incorrect parity, resulting is a physical
error rate of 0.8%+0.1%

−0.1%.
For the encoded experiments, the pre-selection proce-

dure reduced the data set to a total of 15,483 out of the
22,000 encoded runs, roughly equally distributed across
X and Z parities (a pre-acceptance rate of roughly 70%).
Out of the 15,483 pre-accepted runs, 928 had a non-trivial
syndrome, triggering a correction from the decoder, and
in 26 experiments the resulting parity outcome was incor-
rect. When we allow for post-selection, the total number
of accepted runs is reduced to 15,409, and 854 of these
runs trigger a correction by the decoder (74 of the runs
that triggered ambiguous syndromes were rejected by
post-selection), and the logical parity was correct in all
accepted runs. Note that the post-rejection rate is roughly
0.5%, two orders of magnitude lower than the pre-rejection
rate, matching our expectations. These experimental re-
sults are summarized in Table II and Fig. 4.
Using the methods described in Appendix A, we esti-

mate the error rate for the unencoded circuit is 0.8%+0.1%
−0.1%,

while our estimate for the encoded experiments with pre-
selection is 0.17%+0.07%

−0.06% (a reduction in error rate by a

factor of 4.7). Our estimate for the encoded experiments

with pre-selection and post-selection is 0.001%+0.015%
−0.001%,

corresponding to a reduction in error rate by a factor of
800.

IV. REPEATED FAULT-TOLERANT ERROR
CORRECTION

It is not sufficient to show shallow logical circuits that
outperform their physical counterparts. The promise of
quantum computers lies with solving large practical prob-
lems that require deep quantum circuits [8, 9]. This, in
turn, requires fault-tolerant gadgets that intermix quan-
tum error correction with fault-tolerant logical opera-
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runs pre-accepted post-accepted corrections errors Exz error rate gain

unencoded baseline 16,000 16,000 — — 125 0.8+0.1
−0.1% —

encoded, pre-selection only 22,000 15,483 — 928 26 0.17+0.07
−0.06% 4.7

encoded, pre- and post-selection 22,000 15,483 15,409 854 0 0.001%+0.015%
−0.001% 800

TABLE II. Summary of experimental results from Bell correlation experiments with the [[12, 2, 4]] Carbon code. We define “gain”
to be the error rate of the unencoded circuits divided by the error rate of the encoded circuit in question, while “corrections”
refers to how often a non-trivial syndrome was observed in the experiments that were accepted and pre- and/or post-selection.

FIG. 4. Comparison between physical and logical error rates
of the [[12, 2, 4]] Carbon code for the Bell state preparation
circuit in Fig. 3. Precise numerical values can be found in
Table II. The difference in the error rates of the physical versus
logical levels is statistically significant, as illustrated by the
separation between the 95% confidence intervals.

tions [3, 5–7]. Composable, repeatable error correction
is one of the key milestones in this journey, and only
recently experimental demonstrations have become possi-
ble [13, 47, 48]. Two notable demonstrations from the last
several years deserve special mention. A demonstration
for the [[7, 1, 3]] Steane code achieved ≈ 1.75% logical
error rate per error correction cycle for up to 6 rounds of
error correction [12], a logical error rate just under one
order of magnitude higher than the dominating error rate
for the physical operations. Repeated error correction
was also demonstrated for the surface code [13], achieving
error rates of ≈ 9% to ≈ 15% per error correction cycle
for up to 8 rounds of error correction, which is again just
under one order of magnitude higher than the dominating
error rate for the physical operations.

Here we demonstrate as many as 3 rounds of error
correction for the [[12, 2, 4]] Carbon code, using a com-
bination of error correction and rejection. The Carbon
code has a high threshold of approximately 1% and a rate
of 1

6 at distance 4 [49], which makes it a good candidate
for experimental demonstrations. We compare the error
rates of logical circuits with error correction and physical

circuits, and show small circuits with logical error rates
lower than the physical error rates by a statistically sig-
nificant margin. We also give evidence that the error rate
accumulated per round of error correction is comparable
to the error rate accumulated with two physical CNOT
in series.

A. Carbon code circuits

In the spirit of Ref. 22, instead of simply showing in-
dividual logical circuits that outperform their physical
counterparts, we would like to show that families of cir-
cuits composed to perform some computation benefit from
encoding. A crucial element of such a demonstration is
repeated fault-tolerant error correction.

Despite the appealing features of the Steane code (such
as transversal Clifford group and relatively compact state
preparation and syndrome extraction circuits), estimates
for the error threshold of the code remain relatively low,
making experimental demonstrations of logical circuits
outperforming physical circuits challenging.

The Carbon code, on the other hand, has a high thresh-
old under the usual assumptions about parallelism, access
to fresh ancillas, uniformity of the noise [49]. This pro-
posal relies on teleportation-based syndrome extraction to
achieve this performance [50]. Such an approach requires
access to 3 code blocks within the hardware (one block
for the data, and two blocks for the maximally entangled
resource state).

Since the Carbon code requires 12 qubits per block,
three blocks of the Carbon code would not fit in the
32-qubit H2 quantum processor [21]. Instead, we use a
more compact scheme similar to Steane syndrome extrac-
tion [51], but derived from Knill’s approach to syndrome
extraction. The key observation made in Ref. 49 is il-
lustrated in Fig. 5, resulting in a circuit that essentially
serializes the syndrome extracting teleportation into two
1-bit teleportations [52]—the only requirement being that
one must be able to prepare the encoded |0⟩ and |+⟩
states, apply an encoded CNOT, and measure in the en-
coded X and Z eigenbases (and all of these operations
are available in the Carbon code).
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FIG. 5. Syndrome information can be obtained by performing teleportation at the logical level, as described by Knill [50].
Taking the realization of the original teleportation circuit for two logical qubits encoded in a Carbon block, which required 3
encoded blocks (left), it is possible to rearrange commuting circuit components to arrive at a circuit that uses a sequence of two
1-bit teleportations [52] to extract syndrome information requiring only 2 encoded blocks at any given time (right) [49].

B. Physical baselines

Aside from syndrome extraction, we would like to
demonstrate encoded gates acting on the encoded infor-
mation. Using the resources available in the experiment,
we may only consider operations acting on a single data
block, as the ancilla block and additional physical ancillas
used in state preparation (31 qubits in total) take up most
of the remaining qubit resources available in H2.

Within a single block, the simplest fault-tolerant op-
erations available for the Carbon code are the H ⊗ H
gates within a block, and a CNOT between the two log-
ical qubits within the block—the H is implemented via
transversal H application followed by a qubit permutation,
while the CNOT is implemented via a qubit permuta-
tion [53, 54]. Since qubit permutations can be applied
in the H2 system without interaction between qubits,
the permutations do not require additional ancillas to be
fault-tolerant.

Combining gate teleportation and permutation-based
gates allows to perform logical circuits of the form depicted
in Fig. 6 in a single round of error correction. The CNOTs
and SWAPs of logical qubits within a block and their
composition can be implemented by qubit permutations.

With the circuits of Figs. 5 and 6 in mind, we consider
two physical baselines for the error correction experiments:
a sequence of two physical 1-bit teleportations, and a
sequence of two CNOTs (since we are focused on complete
circuits [22], the inputs are fixed to be a tensor product of
a pair of eigenstates of X or a pair of eigenstates of Z, and
we choose the final measurement to be the corresponding
tensor product observable).

The comparison between physical 1-bit teleportation
and logical 1-bit teleportation informs us about the im-
provement error correction, pre-, and post-selection are
providing over the additional encoding overhead, but with-
out using the rigorous fault-tolerant gadget translation of
the circuits from Ref. 7. In other words, this first baseline
is a precursor for a comparison of fault-tolerant gadgets,
and intuitively we expect that logical improvement over
this baseline is necessary for an improvement with gadgets
from Ref. 7.

The comparison between a sequence of two CNOTs and
a round of error correction is motivated by the proposal
in Ref. 22. Instead of benchmarking the entire circuit
family implied by Fig. 6, we choose to compare against
circuits two CNOTs since these are the physical gates
with highest error rates in the physical system. Although
in a fully scalable sub-threshold setting all logical gates
can be made to improve upon their physical counterparts
(by going to sufficiently high distance), the first bar that
an experimental demonstration must meet is the demon-
stration of some non-trivial logical circuit that improves
over its physical counterpart, which is our aim here.

C. Compiler optimizations

Time spent shuttling and cooling ions can lead to sig-
nificant memory error, especially in error correction cir-
cuits that tend to leave some qubits idling for extended
times [12]. Effective memory errors in H2 were previ-
ously reported in Ref. 21 for certain types of circuits
with random connectivity, but the circuits used in this
study are highly structured, leading to more coherent ac-
cumulation of noise, which is especially difficult to model
accurately. To mitigate this problem, for the Carbon
code experiments, we (1) modified the optimization of
transport operations in the compiler and (2) incorporated
dynamical decoupling pulses into the compiled circuits.

For the first optimization, we used a new cost func-
tion to find the optimal qubit assignments and transport
routing, and we allowed the optimizer to run longer than
it normally would during commercial operations. The
new transport optimization cost function was created to
better account for the time spent during gating relative
to the time spent re-arranging qubits. The net result of
this change was that more gates could be done in paral-
lel reducing the number of gating steps at the expense
of slightly less optimal re-arrangement. This optimiza-
tion resulted in an approximate 15% reduction in the
syndrome extraction time, significantly reducing memory
errors. For the second optimization, the output of the
compiler above, which contains the scheduling informa-
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Xα

Xβ

Zδ

Zγ

FIG. 6. Logical circuit family that can be implemented in a modified single round of error correction with the [[12, 2, 4]] Carbon
code, assuming (α, β, δ, γ) ∈ {0,±π

2
,±π}. The logical single-qubit rotations require modified state preparation during syndrome

extraction, and the order of X and Z rotations can be transposed by modifying the order of the 1-bit teleportations, but neither
of these modification impact the ability to extract syndrome information. Any combination of gates in the dashed boxes can be
implemented implemented by a permutation of the physical qubits.

tion for transport and quantum operations, was altered by
inserting dynamical decoupling pulses into the schedule
opportunistically to ensure no reschedule of operations or
additional transport was needed. Both of these techniques
are in experimental phases and not yet available to most
H-series users. However, especially for the circuits pre-
sented in Section IV, the observed post-selection rejection
rates for the complete circuits improved by 2×.

D. Experimental results

We observe a gain of more than an order of magnitude
for a single round of error correction, as evidenced by a
logical error rate of 0.03%, while the two physical base-
lines yield error rates of 0.51% (for physical teleportations)
and 0.35% (a sequence of 2 CNOTs). For two rounds of
error correction, the logical error rates increase to 0.4%,
while the two physical baselines have error rates increase
to 0.9% and 0.8% respectively, which represents a logical
gain of 2 over the physical baselines. For three rounds of
error correction the uncertainty in the logical error rate
estimates do now allow us to conclusively point to an
improvement (the error bars for the logical error rate esti-
mate the and physical baseline error rates overlap slightly
due to a limitation in the number of runs). Details for
each experiment and associated statistical uncertainties
can be found in Table III, and the results are illustrated
in Fig. 7.

Although the gains over the physical error rates appear
to behave non-linearly, the trend for the observed error
rate per round of error correction is consistent with the
expected linear behavior for a small number of repetitions,
as illustrated in Fig. 7. The maximum-likelihood fits yield
error rates per round of the teleportation and the CNOT
baseline of 0.42%±0.09% and 0.41%±0.08% respectively,
while the fit for each round of error correction points
to 0.41%± 0.13%—indicating that the differences in the
error rates per round are not statistically significant.

The apparent non-linear trend in the gain is an artifact
of the different y-intercepts for the linear trends of each
of the sets of experiments. For the physical experiments,
the y-intercept is set by the physical state-preparation
and measurement (SPAM) error rate. This is also the
case for the logical circuits, but details of the circuit
implementation leads to a negative y-intercept despite
positive SPAM error rates. This can be explained by

considering optimizations in scheduling of the operations
in the experimental device. In particular, since memory
and transport errors are the dominating source of error
in the experiments (see Section II), we estimate the op-
timized compiled circuit to have roughly 2r − 1 periods
of significant waiting and transport for r rounds of error
correction (due details of the initial state preparation and
final state measurement), so the logical error rate for r
rounds is estimated to be roughly

pL(2r − 1) + pSPAM,L = 2 pL r + (pSPAM,L − pL), (1)

where pL is the logical error rate per memory/transport
period, and pSPAM,L is the logical SPAM error rate.
Since we expect that the logical error rate per mem-
ory/transport period is larger than the logical SPAM
error rate, the intercept for the overall circuit logical error
rate should be negative, agreeing with our experimental
observations.
Surprisingly, there is no significant difference in the

error rate per round of the two physical baselines, although
absolute error rates are slightly more favorable for the
physical CNOT baseline, likely due to it having fewer
physical measurements.
The pre- and post-rejection rates also serve to inform

whether the error correction circuits are behaving as ex-
pected. In particular we expect the pre- and post-rejection
rates to be linear in the number of repetitions (to leading
order), and the experimental data is highly consistent
with that prediction (see Appendix B).

V. SUMMARY AND OUTLOOK

We have demonstrated several fault-tolerant circuits
outperforming their physical counterparts in a state-of-
the-art QCCD trapped-ion system. Using different codes
and protocols, we demonstrated error rates 4.7 to 800
times lower than the physical error rates in Bell corre-
lation experiments with the [[7, 1, 3]] and the [[12, 2, 4]]
codes. Moreover, we demonstrated up to 3 rounds of error
correction for the [[12, 2, 4]] quantum code by combining
error correction and error rejection, with logical error
rates below a physical baseline circuit of two CNOTs per
round. The error rate per round of error correction is
consistent with error rates that are comparable with the
physical error rates of two CNOTs, and potentially better,
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runs pre-accepted post-accepted corrections errors error rate gain
1
ro
u
n
d unencoded baseline (2 teleports) 20,000 — — — 102 0.51%+0.11%

−0.09% —

unencoded baseline (2 CNOTs) 20,000 — — — 70 0.35%+0.09%
−0.08% —

encoded, pre- and post-selection 10,000 7,054 7,022 1432 2 0.03%+0.06%
−0.03% 12–17

2
ro
u
n
d
s unencoded baseline (4 teleports) 20,000 — — — 189 0.9%+0.1%

−0.1% —

unencoded baseline (4 CNOTs) 20,000 — — — 154 0.8%+0.1%
−0.1% —

encoded, pre- and post-selection 14,548 7,685 7,345 2,948 28 0.4%+0.2%
−0.1% 2–2.25

3
ro
u
n
d
s unencoded baseline (6 teleports) 20,000 — — — 271 1.4%+0.2%

−0.2% —

unencoded baseline (6 CNOTs) 20,000 — — — 236 1.2%+0.2%
−0.1% —

encoded, pre- and post-selection 10,000 4,010 3,645 1,953 28 0.8%+0.3%
−0.3% 1.5–1.75

TABLE III. Summary of experimental results for 1 to 3 rounds of error correction via 1-bit teleportations using the [[12, 2, 4]]
Carbon code.

FIG. 7. Observed error rate for circuits with 1 to 3 rounds
of error correction with the [[12, 2, 4]] Carbon code (green
circles) and physical baselines (blue diamond for pairs of 1-
bit teleportations, and orange squares for pairs of CNOTs).
Results are offset along the x-axis for clarity. Linear fits are
obtained by maximum-likelihood estimation (see Appendix A
for details).

although more data would be necessary to state this con-
clusively. With these results, we have demonstrated that
current quantum processors are already able to reduce
error rates in small circuits through quantum error cor-
rection. Future work will focus on extending these results
to a richer set of fault-tolerant logical gadgets, and to
ultimately enable universal fault-tolerant quantum com-
putation while continuing to lower the achievable logical
error rates. A significant milestone will be to demonstrate
a universal family of quantum circuits with logical error
rates approaching 10−8.
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Lukin, Logical quantum processor based on reconfigurable
atom arrays, Nature 626, 58–65 (2023), arXiv:2312.03982
[quant-ph].

[18] C. Ryan-Anderson, N. C. Brown, M. S. Allman, B. Arkin,
G. Asa-Attuah, C. Baldwin, J. Berg, J. G. Bohnet,
S. Braxton, N. Burdick, J. P. Campora, A. Chernoguzov,
J. Esposito, B. Evans, D. Francois, J. P. Gaebler, T. M.
Gatterman, J. Gerber, K. Gilmore, D. Gresh, A. Hall,
A. Hankin, J. Hostetter, D. Lucchetti, K. Mayer, J. My-
ers, B. Neyenhuis, J. Santiago, J. Sedlacek, T. Skripka,
A. Slattery, R. P. Stutz, J. Tait, R. Tobey, G. Vittorini,
J. Walker, and D. Hayes, Implementing fault-tolerant en-
tangling gates on the five-qubit code and the color code,
arXiv:2208.01863 (2022).

[19] K. M. Svore, Defining logical qubits: Criteria for Resilient
Quantum Computation (2023), (alt link) [Online; accessed
30-March-2024].

[20] J. Haah, What is Your Logical Qubit? (2024), (alt link)
[Online; accessed 30-March-2024].

[21] S. A. Moses, C. H. Baldwin, M. S. Allman, R. An-
cona, L. Ascarrunz, C. Barnes, J. Bartolotta, B. Bjork,
P. Blanchard, M. Bohn, J. G. Bohnet, N. C. Brown,
N. Q. Burdick, W. C. Burton, S. L. Campbell, J. P.
Campora, C. Carron, J. Chambers, J. W. Chan, Y. H.
Chen, A. Chernoguzov, E. Chertkov, J. Colina, J. P.
Curtis, R. Daniel, M. DeCross, D. Deen, C. Delaney,
J. M. Dreiling, C. T. Ertsgaard, J. Esposito, B. Estey,
M. Fabrikant, C. Figgatt, C. Foltz, M. Foss-Feig, D. Fran-
cois, J. P. Gaebler, T. M. Gatterman, C. N. Gilbreth,
J. Giles, E. Glynn, A. Hall, A. M. Hankin, A. Hansen,
D. Hayes, B. Higashi, I. M. Hoffman, B. Horning, J. J.
Hout, R. Jacobs, J. Johansen, L. Jones, J. Karcz,
T. Klein, P. Lauria, P. Lee, D. Liefer, S. T. Lu, D. Luc-
chetti, C. Lytle, A. Malm, M. Matheny, B. Mathew-
son, K. Mayer, D. B. Miller, M. Mills, B. Neyenhuis,
L. Nugent, S. Olson, J. Parks, G. N. Price, Z. Price,
M. Pugh, A. Ransford, A. P. Reed, C. Roman, M. Rowe,
C. Ryan-Anderson, S. Sanders, J. Sedlacek, P. Shevchuk,
P. Siegfried, T. Skripka, B. Spaun, R. T. Sprenkle, R. P.
Stutz, M. Swallows, R. I. Tobey, A. Tran, T. Tran, E. Vogt,
C. Volin, J. Walker, A. M. Zolot, and J. M. Pino, A race-
track trapped-ion quantum processor, Phys. Rev. X 13,
041052 (2023).

[22] D. Gottesman, Quantum fault-tolerance in small experi-
ments, arXiv:1610.03507 [quant-ph] (2016).

[23] Complete quantum circuits are circuits that prepare
qubits in a fixed state, perform a sequence of gates, and
measure one or more qubits to yield classical output bits.

[24] S. T. Flammia and Y.-K. Liu, Direct fidelity estima-
tion from few pauli measurements, Phys. Rev. Lett. 106,
230501 (2011), arXiv:1104.4695 [quant-ph].

https://arxiv.org/abs/2211.07629
https://arxiv.org/abs/2211.07629
https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1103/PhysRevX.11.041058
https://arxiv.org/abs/2207.06431
https://doi.org/10.1038/s41586-023-05782-6
https://arxiv.org/abs/2211.09116
https://arxiv.org/abs/2211.09116
https://arxiv.org/abs/2006.03071
https://arxiv.org/abs/2111.12654
https://arxiv.org/abs/2111.12654
https://doi.org/10.1038/s41586-023-06927-3
https://arxiv.org/abs/2312.03982
https://arxiv.org/abs/2312.03982
https://arxiv.org/abs/2208.01863
https://devblogs.microsoft.com/qsharp/defining-logical-qubits-criteria-for-resilient-quantum-computation/
https://devblogs.microsoft.com/qsharp/defining-logical-qubits-criteria-for-resilient-quantum-computation/
https://web.archive.org/web/20231230164402/https://devblogs.microsoft.com/qsharp/defining-logical-qubits-criteria-for-resilient-quantum-computation/
https://simons.berkeley.edu/talks/jeongwan-haah-microsoft-2024-02-13
https://web.archive.org/web/20240330204855/https://simons.berkeley.edu/talks/jeongwan-haah-microsoft-2024-02-13
https://doi.org/10.1103/PhysRevX.13.041052
https://doi.org/10.1103/PhysRevX.13.041052
https://arxiv.org/abs/1610.03507
https://doi.org/10.1103/PhysRevLett.106.230501
https://doi.org/10.1103/PhysRevLett.106.230501
https://arxiv.org/abs/1104.4695


11

[25] M. P. da Silva, O. Landon-Cardinal, and D. Poulin, Practi-
cal characterization of quantum devices without tomogra-
phy, Phys. Rev. Lett. 107, 210404 (2011), arXiv:1104.3835
[quant-ph].

[26] D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried,
B. E. King, and D. M. Meekhof, Experimental issues in
coherent quantum-state manipulation of trapped atomic
ions, Journal of Research of the National Institute of
Standards and Technology 103, 259 (1998), arXiv:quant-
ph/9710025.

[27] J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler,
S. A. Moses, M. S. Allman, C. H. Baldwin, M. Foss-Feig,
D. Hayes, K. Mayer, C. Ryan-Anderson, and B. Neyenhuis,
Demonstration of the trapped-ion quantum-ccd computer
architecture, Nature 10.1038/s41586-021-03318-4 (2020),
arXiv:2003.01293 [quant-ph].

[28] Quantinuum: Access to the H-Series Quantum Computer,
https://www.quantinuum.com/hardware#access (2024),
[Online; accessed 30-March-2024].

[29] Azure Quantum, https://quantum.microsoft.com

(2024), [Online; accessed 30-March-2024].
[30] QIR Alliance, https://www.qir-alliance.org/ (2024),

[Online; accessed 30-March-2024].
[31] IARPA, ELQ—Entangled Logical Qubits (2024), (alt link)

[Online; accessed 29-March-2024].
[32] D. Nigg, M. Mueller, E. A. Martinez, P. Schindler, M. Hen-

nrich, T. Monz, M. A. Martin-Delgado, and R. Blatt,
Quantum computations on a topologically encoded qubit,
Science 345, 302 (2014), arXiv:1403.5426 [quant-ph].

[33] J. Hilder, D. Pijn, O. Onishchenko, A. Stahl, M. Orth,
B. Lekitsch, A. Rodriguez-Blanco, M. Müller, F. Schmidt-
Kaler, and U. G. Poschinger, Fault-tolerant parity read-
out on a shuttling-based trapped-ion quantum computer,
Phys. Rev. X 12, 011032 (2022).

[34] H. Goto, Minimizing resource overheads for fault-tolerant
preparation of encoded states of the steane code, Scientific
reports 6, 1 (2016).

[35] R. Chao and B. W. Reichardt, Fault-tolerant quantum
computation with few qubits, npj Quantum Information
4, 1 (2018), arXiv:1705.05365 [quant-ph].

[36] J. Preskill, Reliable quantum computers, Proceedings of
the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences 454, 385 (1998).

[37] S. Bravyi and A. Kitaev, Universal quantum computation
with ideal clifford gates and noisy ancillas, Phys. Rev. A
71, 022316 (2005).

[38] D. Bacon, S. T. Flammia, A. W. Harrow, and J. Shi,
Sparse quantum codes from quantum circuits, IEEE
Transactions on Information Theory 63, 2464 (2017),
arXiv:1411.3334 [quant-ph].

[39] D. Gottesman, Opportunities and challenges in fault-
tolerant quantum computation (2022), arXiv:2210.15844
[quant-ph].

[40] N. Delfosse and A. Paetznick, Spacetime codes of clifford
circuits (2023), arXiv:2304.05943 [quant-ph].

[41] Details of the code and construction of logical operations
will be made available in Ref. 49.

[42] The measurement of Y parities requires more complex
circuitry (effectively applying the S gate to change bases),
so we leave these more complex experiments for future
work.

[43] Other rules based on information about the error models
bias are certainly possible, but were not considered for
these experiments.

[44] P. Prabhu and B. W. Reichardt, Distance-four quantum
codes with combined postselection and error correction,
arXiv:2112.03785 [quant-ph] (2021).

[45] E. H. Chen, T. J. Yoder, Y. Kim, N. Sundaresan, S. Srini-
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of the binomial parameter 0 ≤ p ≤ 1, we estimate the
error bars by updating a beta prior with the outcome of
the experiments.

More precisely, taking the prior distribution

p ∼ Beta(α, β), (A1)

the posterior distribution after running N experiments
with F failures is

p ∼ Beta(α+ F, β +N − F ), (A2)

by applying Bayes’ theorem to update our belief about the
parameter p. We take (α, β) = ( 12 ,

1
2 ), known as Jeffreys’

prior.
Throughout, the point estimates we report are the

medians of the posteriors, while the error bars correspond
to the 2.5% and the 97.5% of the posteriors, yielding a
95% credible interval. Following standard practice [55],
we set significant digits for these estimate based on the
most significant digit of the lower bound of the credible
interval.

These estimates are conservative, in the sense that they
are generally biased away from 0 and 1. Notably, even
if no failures are detected, the median of the posterior
will be non-zero, so that our point estimates for the error
probability are never 0. The upper bound of the credible
interval is marginally more conservative than the max-
imum risk 95% confidence “rule of 3” estimate used in
medical and engineering fields [56, 57].
The linear fits depicted in Fig. 7, are estimated by

maximum likelihood fitting of the linear model parameters.
The likelihood is given by the joint probability density
function of the observations, which consists of the product
of the beta-distributed posteriors as outlined above. The
uncertainty in the fit parameters is too large for conclusive
statements about how the average accumulated error rates
per round compare, although it is apparent that the gap
between them is not large.

Appendix B: Rejection rates in the Carbon code

While we are particularly interested in the behavior
of logical error rates for the fault-tolerant circuits, the
behavior of the rejection rates for pre-selection and post-
selection also informs us about the performance of the
fault-tolerant circuits.
First, under the assumption of independent errors at

each circuit location, pre-selection rejections are expected
to be first-order in the physical error rates (recall pre-
selection is not a barrier to scalability, since state prepa-
ration factories can be used to increase the probability of
successful preparation exponentially close to 1). When
error correction and error rejection are combined as we
did in Sections III B and IV, on the other hand, cause the
post-selection rejections rates to be second-order in the
physical error rates, and therefore much smaller.

FIG. 8. Rejection rates during pre-selection (blue circles) and
post-selection (orange diamonds) as a function of the number
of error correction rounds for the [[12, 2, 4]] Carbon code. In
both cases the expected linear trend (as a function of number
of repetitions) is apparent, as is the large separation between
pre-rejections and post-rejections.

Second, for small circuits, the rejection rates should
increase roughly linearly with the logical volume of the cir-
cuit. In our case, the logical volume is simply proportional
to the number of error correction rounds.

These expected trends are apparent in Fig. 8, as is the
large separation between the pre- and post-rejection rates,
consistent with what would be expected between first-
and second-order events.

Appendix C: Additional experimental data for the
Steane code experiments

The Steane code admits transversal Y ⊗ Y measure-
ments, allowing a straight-forward measurement of the
process fidelity for the Bell state preparation. For a
Bell pair, the average fidelity is given by Fa = (I ⊗ I +
X ⊗X − Y ⊗ Y + Z ⊗ Z)/4, and the process fidelity is
Fp = ((d+ 1)Fa − 1)/d [58], where the dimension d = 4
for the Bell pair. In this section, Table IV, Table V, and
Table VI provide the process fidelities for the various
Steane code experiments and their physical level analogs,
and a break-down of the results into the three different
Pauli measurements required.
Note that the “gain” values in Table V and Table VI

are calculated by dividing the process fidelity (which is
calculated using the X ⊗ X, Y ⊗ Y , and Z ⊗ Z bases
measurements) of the unencoded circuit by the process
fidelity of the encoded circuit.
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Pauli runs error rate

X ⊗X 137, 200 0.42%+0.04%
−0.03%

Y ⊗ Y 137, 200 0.39%+0.03%
−0.03%

Z ⊗ Z 137, 200 0.58%+0.04%
−0.04%

Exz 274, 400 0.50%+0.03%
−0.03%

Ep NA 0.69%+0.03%
−0.03%

TABLE IV. The measured process fidelity Ep of the physical-
level Bell preparation gadget and the error rates of individual
Pauli operators X ⊗X, Y ⊗ Y , and Z ⊗ Z. For comparison,
the error rate determined from measuring the probability of
getting the wrong parity from X ⊗X and Z ⊗ Z is given as
Exz.

Pauli runs pre-accepted error rate gain

X ⊗X 12, 100 9, 025 0.10%+0.08%
−0.05% 4.2

Y ⊗ Y 12, 100 9, 082 0.09%+0.08%
−0.05% 4.3

Z ⊗ Z 12, 100 9, 010 0.003%0.025%
−0.003% 193

Exz 24, 200 18, 035 0.05%+0.04%
−0.03% 9.8

Ep NA NA 0.10%+0.06%
−0.04% 6.8

TABLE V. The measured process fidelity Ep of the logical-
level Bell preparation gadget utilizing the Steane code where
the destructive measurements are analyzed using quantum
error correction. The error rates of individual Pauli operators
X ⊗X, Y ⊗ Y , and Z ⊗ Z are also reported. For comparison,
the error rate determined from measuring the probability of
getting the wrong parity from X ⊗X and Z ⊗ Z is given as
Exz.

Pauli runs pre- post- error rate gain
accepted accepted

X ⊗X 12, 100 9, 025 8, 688 0.003%+0.026%
−0.003% 140

Y ⊗ Y 12, 100 9, 082 8, 665 0.03%+0.05%
−0.02%% 13

Z ⊗ Z 12, 100 9, 010 8, 701 0.003%+0.026%
−0.003% 193

Exz 24, 200 18, 035 17, 389 0.001%+0.013%
−0.001% 500

Ep NA NA NA 0.02%+0.03%
−0.01% 35

TABLE VI. The measured process fidelity Ep of the logical-
level Bell preparation gadget utilizing the Steane code where
the destructive measurements are analyzed using QED. The
error rates of individual Pauli operators X ⊗X, Y ⊗ Y , and
Z ⊗ Z are also reported. For comparison, the error rate
determined from measuring the probability of getting the
wrong parity from X ⊗X and Z ⊗ Z is given as Exz.
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