
3M™ Liqui-Cel™ Membrane 
Contactors for the recovery 
of ammonia from municipal 
process waters
Technical Brief

Martin Ulbricht*, Norbert Selzer  
Solventum GmbH, Oehder Straße 28, 42289 Wuppertal, Germany 
*Corresponding author: martin.ulbricht@solventum.com

Keywords: 
Ammonia Recovery, Membrane Contactors, Process Intensification.

Abstract: 
Process water or sludge dewatering effluent (SDE) in side stream of Large Wastewater Treatment Plants (LWWTP) 
provides a great potential for the nitrogen resource recovery and reuse as fertilizer. With more stringent nutrient 
discharge levels, growing capacity limits and requirement for more economic and sustainable treatment process, 
ammonia removal continues to receive growing attention. Compact membrane technology offers an energy efficient 
alternative to the traditional apparatus of physical or biological water treatment. Operational data from first existing 
industrial plants provides the framework for further developments towards circular economy at low carbon footprint.
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Introduction
Common mechanical and biological treatment of the main-stream result in primary and secondary sludge. This 
sludge can be source of energy (in form of “biogas”) and nutrients (in form of Phosphor and Nitrogen). [1-3] The 
return flow from sludge treatment in side-stream typically contains 15-20% of Ammonium-Nitrogen, referring to total 
load in a WWTP. [3,4] The concentrated stream is ideal for the recovery, due to high concentrations of Ammonia 
with more than 1000 ppm. 

(See figure 1) Innovative solutions are being investigated, turning WWTPs in a bio-factory and avoid harmful release 
of ammonia with mainstream outlet for protecting the environment. [1] By ammonia abatement via TransMembrane 
ChemiSorption (TMCS) process in the side stream it could also be shown that the emissions of significant amount 
of Di-Nitrogenous-Oxide (N2O) in the biological treatment of the mainstream could be avoided. [5,6] A gas with 250 
times the Global Warming Potential (GWP) of Carbon-dioxide (CO2) and with third important impact as greenhouse 
gas (GHG), being the main direct contributor in the operation of urban WWTP. [7]

Figure 1. Sample of TransMembrane ChemiSorption (TMCS) process in municipal process water.
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Hollow Fiber Membrane Contactors could be established in different industries for the efficient gas transfer from or 
to liquid streams. [8] Initially proven as successful separation technology in the clean water environment, advances 
purification techniques also allow for use in municipal process waters. Research and development in academic 
settings have paved the way for large-scale implementation, with commercial installations progressing from pilot 
projects to full-size references. [9] Growing experience from long-term operation provides basis to process 
evaluation and improvement.

Methods
The most widely used EXF-Series design of 3M™ Liqui-Cel™ Membrane Contactor modules can be described as a 
Radial-Flow device with a four-port configuration and a center baffle (See Figure 2, left). A hollow fiber configuration 
does provide a large surface area for the gas transfer. The polypropylene membrane is not wettable by water within 
the specified operating pressure, because material repels water droplets from its surface and a small pore size does 
not allow liquid water to pass through. The proposed TransMembrane ChemiSorption (TMCS) process uses this 
hydrophobic membrane as barrier between two aqueous liquids (See Figure 2, right).
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Figure 2. 3M™ Liqui-Cel™ Membrane Contactor EXF-Series for TMCS operation (left) and Single microporous hollow 
fiber showing mass transfer of ammonia gas molecules (right)

During operation, the Ammonia (NH3)-loaded wastewater flows along the outside (shell side) of the hollow fibers, 
while a countercurrent flow of acid solution is introduced to the inside of the hollow fibers (lumen side). Gases pass 
the gas-filled pores of the microporous membrane to chemically react with the receiving phase. Driving force to this 
process is the difference in ammonia gas concentration between the wastewater stream and the acidic solution. By 
recirculation of the absorption fluid, the transferred NH3 (gas) converts to an ammonium (NH4+)-salt solution until 
saturation limit is reached. However, there is also water vapor transfer to dilute acid and avoid scaling and blocking 
the hollow fiber lumen.

First industrial TMCS system with commercial Liqui-Cel membrane contactors for ammonia recovery was installed 
already in 2004 at the Membrana GmbH site in Wuppertal, Germany. [10] The goal of the process water treatment 
to reduce the NH3 concentration from 1,5g/L by at least 90% was achieved. This was followed by further large-scale 
installations for the treatment of flue gas condensate in fossil fueled power stations or condensate polishing effluent 
from regeneration of ion exchangers. Currently, the largest systems for ammonia recovery from process wastewater 
for flow rates above 100m³/h are in operation in the semiconductor industry in Asia. First successful SDE treatment 
by Hollow Fiber Membrane Contactors to recover the ammonia are running since 2016 in Yverdon-Les-Bains, 
Switzerland. [11]

Results
For TMCS treatment of municipal process water, appropriate pre-treatment is required to protect the membranes 
from hardness precipitation, particle blocking and biofouling. In addition, care must be taken to avoid or remove 
additives that lead to wetting of the hydrophobic membrane. The following process scheme (See Figure 3, left) 
shows an installation example, with coagulation/flocculation, followed by lamella sedimentation and sand filter. 
Additional filter steps are then required and savings on the caustic consumption are realized by CO2-stripper and 
temperature increase by heat exchanger.
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Figure 3. Process scheme for installation example of a pre-treatment to TMCS process (left) and photo of an EXF-8x20 
TMCS system for ammonia recovery in sludge dewatering plant (right) 
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The compact, modular and scalable technology uses only little space (See Figure 3, right) to enable containerized 
systems that can be mobile, does not require dedicated areas of land as with biological treatment and allows to 
quickly adapt to capacity changes or scale-up from pilot programs. Process flexibility is an advantage due to short 
start-stop times, running continuous or batch mode, operating within a wide range of ammonia concentrations, 
tolerating rapid fluctuations in inlet ammonia concentrations, and providing excellent turn down ratio for  
wastewater flow.

Due to the hygroscopic behavior of acid causing water vapor transfer, the ammonium salt solution is becoming 
diluted. Depending on the inlet ammonia levels and the temperature gradient, additional post-concentration may be 
required. A new approach is proposed to integrate Membrane Contactor Technology for osmotic distillation with 
the caustic soda used in the pre-conditioning process. The resulting ammonium-salt achieved fertilizer quality in 
composition and concentration, so the product was used in near farming for ammonia-nutrient crop-feed. [11,12] 

Discussion
When comparing 3M™ Liqui-Cel™ Membrane Contactors for ammonia removal vs Stripping and Scrubbing 
technology, three key differences can be observed. (See Figure 4) Firstly, the ability for the NH3 gas to transfer from 
the wastewater phase, through the membrane pore and react with the acid phase, leads to a single step operation. 
In conventional tower stripping the NH3 gas is desorbed into an air stream in one tower. A second tower is used to 
scrub NH3 from the air by reacting it with an acid stream. Secondly, the tower technology requires a larger building 
footprint to provide the contact area necessary for the separation task. The membrane contactor enables very high 
area to volume ratio, providing more compact solution. Finally, since stripping and absorption occurs simultaneously 
during TMCS, the amount of auxiliary equipment such as air blowers and pumps is reduced.
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Figure 4. Technology comparison of conventional Two-Stage Stripping + Scrubbing Process (left) to Single Stage  
TMCS Process (right)

Conclusions
The TMCS process intensification combines several treatment steps in a single apparatus, which offers a smaller 
equipment footprint compared to traditional columns. The membrane acts as a barrier against contamination of 
the uptake phase to produce a high-quality ammonium salt solution that can be reused. The modular design of 
a membrane system offers additional advantages for scale-up, control and redundancy. The TMCS process is 
a promising solution when space is limited, and energy consumption is critical. In addition to the energy-saving 
recovery of valuable compounds and thus optimized material cycles of important resources, greenhouse gas 
emissions (nitrous oxide) from biological treatment processes can be reduced.
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