

INSTRUCTION MANUAL

MultiGard 5000[®] System Integration

Modbus/TCP Gateway Option

1-800-MSA-INST or FAX (724) 776-8783 MSA International (412) 967-3354 or FAX (412) 967-3451 In Canada 1-800-267-0672 or FAX (416) 663-5908

© Mine Safety Appliances Company 2017 – All Rights Reserved

Manufactured by MINE SAFETY APPLIANCES COMPANY PITTSBURGH, PENNSYLVANIA 15230

3013-1048 Rev. 0

MSA Permanent Instrument Warranty

1. Warranty – Seller warrants that this product will be free from mechanical defect or faulty workmanship for a period of eighteen (18) months from date of shipment or one (1) year from installation, whichever occurs first, provided it is maintained and used in accordance with Seller's instructions and / or recommendations. This warranty does not apply to expendable or consumable parts whose normal life expectancy is less than one (1) year such as, but not limited to, non-rechargeable batteries, filament units, filter, lamps, fuses etc. The Seller shall be released from all obligations under this warranty in the event repairs or modifications are made by persons other than its own or authorized service personnel or if the warranty claim results from physical abuse or misuse of the product. No agent, employee or representative of the Seller has any authority to bind the Seller to any affirmation, representation or warranty concerning the product. Seller makes no warranty concerning components or accessories not manufactured by the Seller, but will pass on to the Purchaser all warranties of manufacturers of such components. THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND IS STRICTLY LIMITED TO THE TERMS HEREOF. SELLER SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR **OF FITNESS FOR A PARTICULAR PURPOSE.**

2. Exclusive Remedy – It is expressly agreed that Purchaser's sole and exclusive remedy for breach of the above warranty, for any tortious conduct of Seller, or for any other cause of action, shall be the repair and / or replacement at Seller's option, of any equipment or parts thereof, which after examination by Seller is proven to be defective. Replacement equipment and /or parts will be provided at no cost to Purchaser, F.O.B. Seller's Plant. Failure of Seller to successfully repair any nonconforming product shall not cause the remedy established hereby to fail of its essential purpose.

3. Exclusion of Consequential Damage – Purchaser specifically understands and agrees that under no circumstances will Seller be liable to Purchaser for economic, special, incidental or consequential damages or losses of any kind whatsoever, including but not limited to, loss of anticipated profits and any other loss caused by reason of nonoperation of the goods. This exclusion is applicable to claims for breach of warranty, tortious conduct or any other cause of action against seller.

1.0 Introduction

This MultiGard 5000 System Integration Manual for the Modbus/TCP Gateway Option provides the information necessary for a customer or a third party integrator to successfully connect the system onto a larger industrial network using Modbus/TCP protocol. This interface is provided by an Industrial Control Communications, Inc. (ICC) ETH-1000 Ethernet Gateway added into the MultiGard 5000 system along with an Ethernet switch.

This document is intended to cover all six models of the MultiGard 5000 System that are factory configured at MSA from two platforms. The models are 8 point, 16 point, dual 8 point, 24 point, 32 point, and dual 16 point. Keep the purchased model and its size in mind while using this document.

The MultiGard 5000 system shall have the Compact Logix L24 processor installed as a standard offering. The L24 processor is capable of using this Modbus/TCP gateway option.

The MultiGard 5000 System is intended to be a complete stand-alone gas detection system and was designed to be the <u>only point of control</u> for its many features and user changeable parameters. For safety reasons MSA cannot allow the customer and third parties to have unrestricted access to the MultiGard System programming.

2.0 References

The user of this document should be familiar with Modbus addressing and compatible networks. The following references may be used with this manual:

- [MSA] Field Wiring Diagram, Multigard System (Drawing) [Delivered with a MultiGard System; part of the 3-ring binder.]
- [MSA] MultiGard System Instruction Manual ASK 3103-35 [Delivered with a MultiGard System; part of the 3-ring binder.]
- [MSA] MultiGard System Factory Configuration Sheets [Delivered with a MultiGard System; part of the 3-ring binder.]

References not supplied by MSA:

- Modbus/TCP protocol documentation and network reference materials
- Instruction Manuals Appropriate to any third party equipment (hardware and software)

3.0 Modbus/TCP Communication Interface

The ICC ETH-1000 Ethernet gateway is configured for the appropriate Multigard 5000 system model at MSA during system assembly and test. This includes both the hardware and gateway configuration.

The gateway updates itself continuously with data from the Compact Logix L24 processor using Ethernet/IP protocol via the Ethernet switch.

Data then becomes available in Modbus/TCP protocol from the ICC ETH-1000 Ethernet gateway via the Ethernet switch. The gateway is a multiprotocol device using its single Ethernet port operating per the 10/100Base-T standard.

3.1 Interface Cables

The Multigard system L24 processor and the ICC ETH-1000 gateway are connected to an unmanaged Ethernet switch using patch cables of CAT-5e or better grade. See the Multigard 5000 system drawings for details on the hardware installation.

Also use a CAT-5e or better grade patch cable to connect to the Ethernet switch to the external network providing a Modbus/TCP connection from the Multigard system to other customer equipment.

3.2 Ethernet Addresses

The Ethernet addresses associated with the MultiGard 5000 System and the ICC ETH-1000 gateway <u>must</u> be set at MSA during factory configuration.

The addresses that will be set into the processor and gateway are from customer (or responsible third party) supplied information as follows:

- IP Address for the ICC ETH-1000 Gateway
- IP Address for the Multigard system Allen-Bradley L24 processor
- Subnet Mask common to this Ethernet network
- Default Gateway common to this Ethernet network <u>NOTE</u>: To satisfy the ETH-1000 the Default Gateway address must begin with 1-223 and it cannot consist of all zeros. If there is no desire to communicate over a default gateway, then the address provided should not physically exist on the network.

The addresses will be placed onto labels located inside the MultiGard 5000 System enclosure for easy reference as well as in the system configuration document (part of the 3-ring binder).

4.0 Guidelines For Accessing Data Table Addresses

Remember the following key items about the MultiGard 5000 System when using these tables to decide what is applicable:

- All Modbus data is read-only (holding register, 4X, or read input, 1X) except for the acknowledge items listed in Table 6 (force single coil, 0X).
- <u>Model</u>: 8 point, 16 point, dual 8 point, 24 point, 32 point, or dual 16 point
- <u>Single or Dual</u>: Single sequencer MultiGard 5000 Systems can have 4 sensors (#1 #4) installed. Dual sequencer MultiGard 5000 Systems can have 2 sensors (#1, #2) on Sequencer A and 2 sensors (#3, #4) on Sequencer B. *Note that in the following tables reference to Single Sequencer is identical to Dual Sequencer A. In the tables this is represented as "Sequencer (A)".*
- <u>Options</u>: The User Configured Outputs (UCO) can be supplied as UCO #1 only or both UCO #1 & UCO #2 together.
- Additional information necessary to properly decode the data is supplied under each table if applicable.
- All analog data will automatically be in engineering units based on the MultiGard 5000 System factory configuration. No additional scaling is required.
- It may be desirable to read blocks of words out of the gateway instead of only the specific addresses listed in the tables. This depends on the interfacing requirements and the software capabilities of the third party product. If this is done, be sure to only use the addresses listed in this document for presentation purposes.

Use only data table addresses defined in this manual. The use of undefined addresses will produce an incorrect presentation. Data table addresses not defined are reserved for MSA use only.

• Customers who use bi-directional communications with the controller must avoid writing into addresses not referenced in this document.

Do not write into undefined addresses. Doing so may prevent the system from detecting gas. Data table addresses not defined are reserved for MSA use only.

Failure to follow this warning can result in serious personal injury or death.

- The end user must verify all data transfers following the system integration effort.
- See Table 1 below, and its associated warning, for important information about

setting up an end user watchdog function to monitor the communications integrity between the Multigard 5000 System and the ETH-1000 gateway.

Gateway	Address	Comments
Communications	40555	Changing Value** – Normal
Status Register:		Stopped Value ^{**} – Failed

Table 1: Multigard 5000 System to ETH-1000 Communication Status

** This value changes from 0 to 59 and is the seconds from the processor clock buffered through the Multigard program. The absolute value of the register has no direct significance to its use as a watchdog function.

In the end user's system, monitor this register for continuous activity. If it stops changing for a predetermined amount of time, declare a communications failure and flag all other data coming through this gateway as outdated.

Only when the above register is continuously changing can the other data presented via the gateway be considered current.

CAUTION To ensure communications integrity between the Multigard 5000 System and the ICC ETH-1000 gateway the communications status register must be monitored and logically implemented as a watchdog function by the end user. Failure to implement the watchdog function can result in the presentation of outdated data.

5.0 Multigard System Data Table Addresses

The most useful MultiGard 5000 System data will be defined in Tables 2 through 8 along with corresponding Modbus/TCP addresses. These addresses will allow for the presentation of gas detection information and other status.

Point #	Senso	or 1	Sens	or 2	Sens	sor 3	Sensor 4	
1	40001	40002	40065	40066	40129	40130	40193	40194
2	40003	40004	40067	40069	40131	40132	40195	40196
3	40005	40006	40069	40070	40133	40134	40197	40198
4	40007	40008	40071	40072	40135	40136	40199	40200
5	40009	40010	40073	40074	40137	40138	40201	40202
6	40011	40012	40075	40076	40139	40140	40203	40204
7	40013	40014	40077	40078	40141	40142	40205	40206
8	40015	40016	40079	40080	40143	40144	40207	40208
9	40017	40018	40081	40082	40145	40146	40209	40210
10	40019	40020	40083	40084	40147	40148	40211	40212
11	40021	40022	40085	40086	40149	40150	40213	40214
12	40023	40024	40087	40088	40151	40152	40215	40216
13	40025	40026	40089	40090	40153	40154	40217	40218
14	40027	40028	40091	40092	40155	40156	40219	40220
15	40029	40030	40093	40094	40157	40158	40221	40222
16	40031	40032	40095	40096	40159	40160	40223	40224
17	40033	40034	40097	40098	40161	40162	40225	40226
18	40035	40036	40099	40100	40163	40164	40227	40228
19	40037	40038	40101	40102	40165	40166	40229	40230
20	40039	40040	40103	40104	40167	40168	40231	40232
21	40041	40042	40105	40106	40169	40170	40233	40234
22	40043	40044	40107	40108	40171	40172	40235	40236
23	40045	40046	40109	40110	40173	40174	40237	40238
24	40047	40048	40111	40112	40175	40176	40239	40240
25	40049	40050	40113	40114	40177	40178	40241	40242
26	40051	40052	40115	40116	40179	40180	40243	40244
27	40053	40054	40117	40118	40181	40182	40245	40246
28	40055	40056	40119	40120	40183	40184	40247	40248
29	40057	40058	40121	40122	40185	40186	40249	40250
30	40059	40060	40123	40124	40187	40188	40251	40252
31	40061	40062	40125	40126	40189	40190	40253	40254
32	40063	40064	40127	40128	40191	40192	40255	40256

 Table 2:
 Sensor Gas Levels

Gas sensor levels for each point among the active sensors use a pair of consecutive addresses. They are compliant with the IEEE 754 Floating Point format that is 32 bit single precision. One decimal place is passed through the gateway.

		Sensor 1			Sensor 2			Sensor 3			Sensor 4	
Point #	Trouble	Warning	Alarm									
1	14098	14099	14100	14610	14611	14612	15122	15123	15124	15634	15635	15636
2	14130	14131	14132	14642	14643	14644	15154	15155	15156	15666	15667	15668
3	14162	14163	14164	14674	14675	14676	15186	15187	15188	15698	15699	15700
4	14194	14195	14196	14706	14707	14708	15218	15219	15220	15730	15731	15732
5	14226	14227	14228	14738	14739	14740	15250	15251	15252	15762	15763	15764
6	14258	14259	14260	14770	14771	14772	15282	15283	15284	15794	15795	15796
7	14290	14291	14292	14802	14803	14804	15314	15315	15316	15826	15827	15828
8	14322	14323	14324	14834	14835	14836	15346	15347	15348	15858	15859	15860
9	14354	14355	14356	14866	14867	14868	15378	15379	15380	15890	15891	15892
10	14386	14387	14388	14898	14899	14900	15410	15411	15412	15922	15923	15924
11	14418	14419	14420	14930	14931	14932	15442	15443	15444	15954	15955	15956
12	14450	14451	14452	14962	14963	14964	15474	15475	15476	15986	15987	15988
13	14482	14483	14484	14994	14995	14996	15506	15507	15508	16018	16019	16020
14	14514	14515	14516	15026	15027	15028	15538	15539	15540	16050	16051	16052
15	14546	14547	14548	15058	15059	15060	15570	15571	15572	16082	16083	16084
16	14578	14579	14580	15090	15091	15092	15602	15603	15604	16114	16115	16116
17	16146	16147	16148	16658	16659	16660	17170	17171	17172	17682	17683	17684
18	16178	16179	16180	16690	16691	16692	17202	17203	17204	17714	17715	17716
19	16210	16211	16212	16722	16723	16724	17234	17235	17236	17746	17747	17748
20	16242	16243	16244	16754	16755	16756	17266	17267	17268	17778	17779	17780
21	16274	16275	16276	16786	16787	16788	17298	17299	17300	17810	17811	17812
22	16306	16307	16308	16818	16819	16820	17330	17331	17332	17842	17843	17844
23	16338	16339	16340	16850	16851	16852	17362	17363	17364	17874	17875	17876
24	16370	16371	16372	16882	16883	16884	17394	17395	17396	17906	17907	17908
25	16402	16403	16404	16914	16915	16916	17426	17427	17428	17938	17939	17940
26	16434	16435	16436	16946	16947	16948	17458	17459	17460	17970	17971	17972
27	16466	16467	16468	16978	16979	16980	17490	17491	17492	18002	18003	18004
28	16498	16499	16500	17010	17011	17012	17522	17523	17524	18034	18035	18036
29	16530	16531	16532	17042	17043	17044	17554	17555	17556	18066	18067	18068
30	16562	16563	16564	17074	17075	17076	17586	17587	17588	18098	18099	18100
31	16594	16595	16596	17106	17107	17108	17618	17619	17620	18130	18131	18132
32	16626	16627	16628	17138	17139	17140	17650	17651	17652	18162	18163	18164

Table 3:	Points	1-32	Alarm	States
----------	--------	------	-------	--------

Each register will present either a "0" or "1". Where, 0 = Normal and 1 = Condition Exists!

Point #	Syste	m A	Syste	em B
	Sample	Bypass	Sample	Bypass
1	18193	18257	18321	18353
2	18194	18258	18322	18354
3	18195	18259	18323	18355
4	18196	18260	18324	18356
5	18197	18261	18325	18357
6	18198	18262	18326	18358
7	18199	18263	18327	18359
8	18200	18264	18328	18360
9	18201	18265	18329	18361
10	18202	18266	18330	18362
11	18203	18267	18331	18363
12	18204	18268	18332	18364
13	18205	18269	18333	18365
14	18206	18270	18334	18366
15	18207	18271	18335	18367
16	18208	18272	18336	18368
17	18225	18289		
18	18226	18290		
19	18227	18291		
20	18228	18292		
21	18229	18293		
22	18230	18294		
23	18231	18295		
24	18232	18296		
25	18233	18297		
26	18234	18298		
27	18235	18299		
28	18236	18300		
29	18237	18301		
30	18238	18302		
31	18239	18303		
32	18240	18304		

Table	4:	Flow	Status
Labic	-	1 10 11	Durub

Each register will present either a "0" or "1". Where, 0 = Normal and 1 = Condition Exists!

	Address	Comments
System A Position:	40525	Integer value = Point #
System B Position:	40526	Integer value = Point #
System A		0 = Sampling
Operation Mode:	40527	1 = Manual Calibration
		2 = Auto-Standardization
System B		0 = Sampling
Operation Mode:	40528	1 = Manual Calibration
		2 = Auto-Standardization
Factory Defaults Forced:	18848	0 = Normal $1 = Forced!$
Sensor 1 Gas Level:	40529 40530 *	Uncorrected, scaled, continuous
Sensor 2 Gas Level:	40531 40532 *	Uncorrected, scaled, continuous
Sensor 3 Gas Level:	40533 40534 *	Uncorrected, scaled, continuous
Sensor 4 Gas Level:	40535 40536 *	Uncorrected, scaled, continuous

 Table 5: Miscellaneous

* Gas sensor levels for each point among the active sensors use a pair of consecutive addresses. They are compliant with the IEEE 754 Floating Point format that is 32 bit single precision. One decimal place is passed through the gateway.

Table 6: Common Alarming

	System A	System B	
Horn Relay Image:	18584	18612	Fixed/Non-failsafe
			0=Open 1=Closed
Trouble Relay Image:	18577	18609	Fixed/failsafe
			0=Closed 1=Open
Warning Relay Image:	18578	18610	Default Non-failsafe*
			0=Open 1=Closed
Alarm Relay Image:	18579	18611	Default Non-failsafe*
			0=Open 1=Closed

* User Changeable Parameter - State may need to be reversed depending on usage.

	Sequencer (A)	Sequencer B	Comments
Horn Acknowledge:	08906	08941	Coil - Write
(Push Button)			(Momentary action is
			necessary.)
Condition Acknowledge:	08656	08683	Coil - Write
(Push Button)			(Momentary action is
			necessary.)

Table 7: Horn & Condition Acknowledges

Output #	UCO#1	UCO#2	Output #	UCO#1	UCO#2
1	18705	18769	17	18737	18801
2	18706	18770	18	18738	18802
3	18707	18771	19	18739	18803
4	18708	18772	20	18740	18804
5	18709	18773	21	18741	18805
6	18710	18774	22	18742	18806
7	18711	18775	23	18743	18807
8	18712	18776	24	18744	18808
9	18713	18777	25	18745	18809
10	18714	18778	26	18746	18810
11	18715	18779	27	18747	18811
12	18716	18780	28	18748	18812
13	18717	18781	29	18749	18813
14	18718	18782	30	18750	18814
15	18719	18783	31	18751	18815
16	18720	18784	32	18752	18816

Table 8: User Configured Output (UCO) Relay Images

In the table above: 0 = Open 1 = Closed (Default Non-failsafe*) * User Changeable Parameter - State may need to be reversed depending on usage.

Table 9: Particulate Status for AQGard

	Sequencer (A)	Comments			
Particulate Status:	40561	AQGard Users Only			
0 = Normal, $1 = Flow Ok$, Laser Bad, $2 = Flow Bad$, Laser Ok, $3 = Flow$					

Bad, Laser Bad, 4 = Error