

Chillgard® VRF

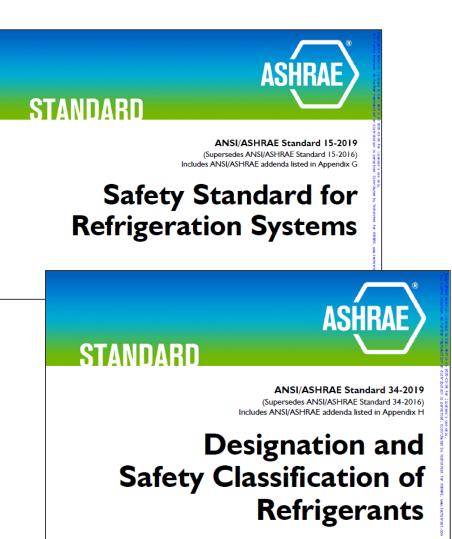
Refrigerant Monitor for Occupied Spaces

VRF Systems

- VRF= "Variable Refrigerant Flow"
- Refrigerant is conditioned by a condensing unit and circulated within the building to multiple indoor units
- VRF units work only at the needed rate allowing substantial energy savings
- VRF technology allows individual indoor units to heat or cool as required, while the compressor load benefits from the internal heat recovery
- Uses pure refrigerant piped throughout the space versus a chilled water system

- VRF systems are becoming more popular as they can be more efficient and more flexible
 - Energy savings of up to 55% are predicted*
- VRF systems act as multi-split systems, connecting multiple indoor units
- Attrigedar prin Cutdor uni Cutdor uni

• Best suited for buildings with multiple spaces, e.g. hotels


^{*}Thornton, Brian (December 2012). <u>Variable Refrigerant Flow Systems</u> (pdf). General Services Administration (Report). US Federal Government. Retrieved 2013-08-06.

Refrigerant Monitoring in VRF Systems

- ASHRAE has two prevailing standards
 - ASHRAE 15 Defines Requirements under specific Occupancy uses;

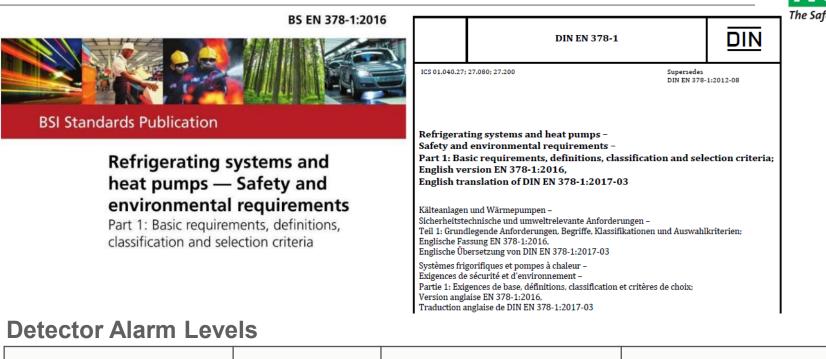
 ASHRAE 34 defines Refrigeration Classifications

- ASHRAE 15 and ASHRAE 34 are evolving to address safety and environmentally conscious use of refrigerants.
- For VRF Monitoring a new term, *RCL* is used.
 - ASHRAE 15 defers to ASHRAE 34 for definition:


refrigerant concentration limit (RCL): see definition in ANSI/ASHRAE Standard 34².

• ASHRAE 34 defines RCL as:

refrigerant concentration limit (RCL): the refrigerant concentration limit, in air, determined in accordance with this standard and intended to reduce the risks of acute toxicity, asphyxiation, and flammability hazards in normally occupied, enclosed spaces.


Refrigerant Monitoring in VRF Systems

- ASHRAE Standard 15 changed in 2019, mentioning the need for VRF refrigerant detection
- Chapter 7:
 - For refrigerating systems that are connected to the occupied space through ductwork, refrigerant detectors shall be located within the listed equipment.
 - 2. For refrigerating systems that are directly connected to the occupied space without ductwork, the refrigerant detector shall be located in the equipment, or shall be located in the occupied space at a height of not more than 12 in. (30 cm) above the floor and within a horizontal distance of not more 3.3 ft (1.0 m) with a direct line of sight of the unit.
- Project engineers are incorporating VRF detectors into building systems for safety and energy efficiency.

Standards - EN378

EN378		Occupational Safety	Machinery Rooms	
	Notes	TWA / ATEL/ODL	Pre-Alarm	Main Alarm
		ppm	ppm	ppm
AMMONIA		25	500	30000
HFC/HFO		500	500	
CARBON DIOXIDE		5000	5000	
A2L (HFC/HFO)	25% LFL	500	500	

Acute-Toxicity Exposure Limit (ATEL) or Oxygen Deprivation Limit (ODL),

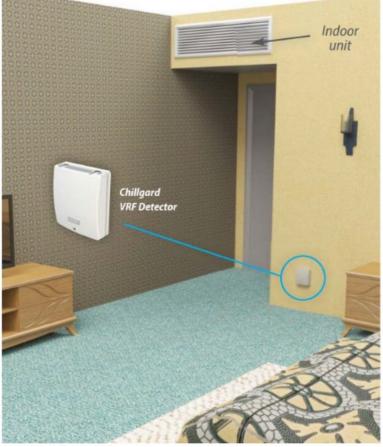
The requirement of the standard states that if the refrigerant concentration in a room can exceed a critical level due to the loss of the complete refrigerant charge of the system due to a leak, a fixed refrigerant leak detector must be installed to warn the occupant and the building management system.

QLMV: Quantity Limit with Minimum Ventilation in kg/m3 QLAV: Quantity Limit with Additional

Ventilation in kg/m3

RCL: Refrigerant Concentration Limit in kg/m3

Refrigerant	Allowable concentration (kg/m ³) RCL	QLMV (kg/m³)	QLAV (kg/m³)
R-22	0.21	0.28	0.50
R-134a	0.21	0.28	0.58
R-407c	0.27	0.44	0.49
R-410A	0.39	0.42	0.42
R-744	0.072	0.074	0.18
R-32	0.061	0.063	0.15


Example:

Hotel room with ducted indoor unit attached to a R410A VRF Rooms size: 6m x 3m x 2.4m Gas: R410A System charge: 50kg

Room Volume = 43.2m3 QLMV= 0.42 kg/m3 (From EN378)

Max system charge = $43.2 \times 0.42 = 18.14 \text{ kg}$

If the R410A system has a total refrigerant charge above 18.14 kg then a leak detector must be installed.

The Chillgard VRF

- PAIR technology is designed to minimize cross-sensitivity through the use of specific optical filters
- The Chillgard VRF uses an optical filter specific to R410A

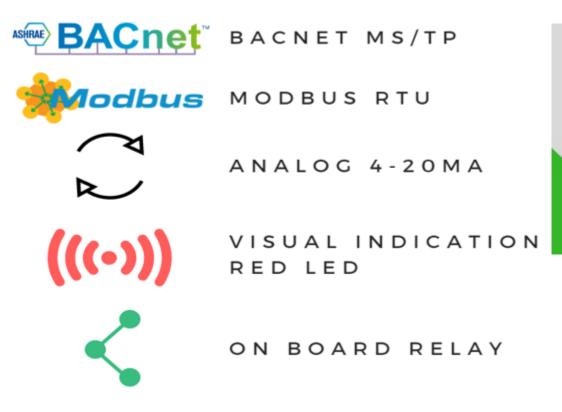
- Zero stability, or maintaining a stable baseline, is critical for low ppm detection to eliminate drift
- Instability can compromise low level detection by causing inaccuracy, false alarms, limited detection levels, and requiring frequent maintenance
- PAIR technology has the advantages of longer life and low cross-sensitivity (compared to semi-conductors)

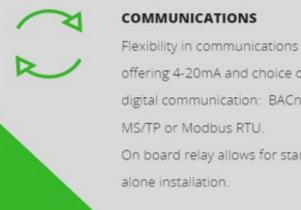
The Safety Company

Chillgard VRF

Chillgard VRF

- Photoacoustic Infrared (PAIR) Technology
- BACnet MS/TP output on board
- BTL listed
- Low level of detection
- Low maintenance
- Ease of use
- ➢New: 80dB audible buzzer on board
- ➢New: 2-year warranty

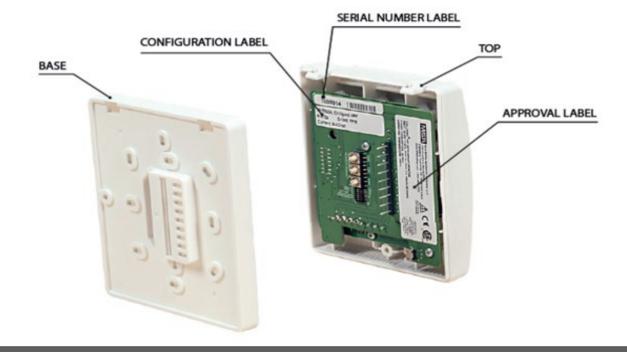




Value and Benefits – Communications

The Chillgard VRF offers multiple communication on board

offering 4-20mA and choice of digital communication: BACnet On board relay allows for stand



BACnet® is a registered trademark of ASHRAE

Operating the Chillgard VRF - Mounting

- Discreet and small for ceiling mount or wall mount installations
- Two basic parts, base and cover
- Mounts to Standard Double-Gang electrical box.

- Min Det: 25 ppm
- Min Alarm: 50 ppm
 - Factory default 750 ppm

• Dip-switch for changing factory settings

- Audible Buzzer: max. of 80 dB at 12"
 - Factory default switched ON

Figure 2: Connecting Wires to Terminal Connector

25

Electrical Connection

Terminal connection	Description
24V+	24V DC+ or AC Line
24V-	24V DC- or AC Neutral
	Circuit common/analog signal referance
GAS OUT (mA or V)	For (mA) - Gas reading as current (4 - 20 mA = 0 - 1000 ppm) For (V) - Gas reading as voltage (2 - 10 V = 0 - 1000 ppm)
DATA a (BACnet or Modus)	For BACnet - RS485 BACnet MSTP (a) connection For Modbus - RS485 Modbus RTU (a) connection
DATA b (BACnet or Modus)	For BACnet - RS485 BACnet MSTP (b) connection For Modbus - RS485 Modbus RTU (b) connection
NO	Relay - normally open
С	Relay - common
NC	Relay - normally closed

• Visual LED Functionality

 ACCEPTED WIRE SIZE: 14-26 AWG (SINGLE WIRE ONLY), TO CONNECT UNITS IN SERIES, THE CONNECTOR TERMINALS WILL EXCEPT UP TO TWO WIRES BETWEEN 18-26 AWG.
DOWED DECUMPENTATION

2. POWER REQUIREMENTS: 24 VAC ±20%, 50/60 HZ, CLASS 2 TRANSFORMER OR

3. LED INDICATION:	
NORMAL - FLASH ONCE PER 60 SECS	
STARTUP - FLASH 1 HZ (ONCE PER SEC)	
CAL CHECK - SLOW FLASH 0.5 HZ (ONCE EVERY 2 SECS)	
ALARM - FAST FLASH AT 3 HZ (3 TIMES PER SEC)	
FAULT - SOLID ON	
4. WEIGHT: 230g (0.5 LBS).	
5. FOR R5485: ENABLE THE TERMINATION RESISTOR ONLY IN	,
THE UNIT THAT IS FURTHEST FROM THE CONTROLLER.	
ENSURE THAT ONLY ONE UNIT ON THE BUS HAS THIS ENABL	ED.

USE SWITCH S303-6 ('ON' POSITION ADDS RESISTOR).

Chillgard VRF – BACnet Communications DIGITAL COMMUNICATION

MSA

The following parameters must be set properly in order to communicate with a BACnet controller

BACNET

minor Center

MAC Address, Instance ID and Baud Rate

Object Name	Instance Number (default)	Property	Range	
Gas Concentration	1	Read	0-1000 (pp	om)
Gas Number	2	Read	R-410A	1
Active Alarm Level	3	Read	(ppm)	
Device State	4	Read	Device Fault	80 (MSB)
			Address Fault	8 (MSB)
			Concentration Alarm	10 (LSB)
			Warm Up Complete	0 (LSB)
High Alarm Level	5	Read/Write	750 defai range = 25-	
Low Alarm Level	6	Read/Write	50 default range = 25-1000	
Instance Number	7	Read/Write	Default val Serial Number Labe Range: 0~41	el (Figure 1)
Room Temp	8	Read		

Chillgard VRF – Modbus Communications

DIGITAL COMMUNICATION

The following parameters must be set properly in order to communicate via Modbus

MODBUS

Modbus Address and Baud Rate

Register Name	PDU Address	Logical Address	Property	Range	
Gas Concentration	0x0000	1	Read	0-1000 (pp	m)
Gas Number	0x0001	2	Read	R-410A	
Active Alarm Level	0x0002	3	Read	(ppm)	
	0x0003	4	Read	Device Fault	80 (MSB)
Fault and Device State				Address Fault	8 (MSB)
				Concentration Alarm	10 (LSB)
				Warm Up Complete	0 (LSB)
High Alarm Loval	0x0004	5	Read/Write	750 defau	ılt
High Alarm Level	0X0004	5	Reau/white	range = 25-1	000
Law Alarm Lavel			DeedMuite	50 defau	lt
Low Alarm Level	0x0005	6	Read/Write	range = 25-1	000
Room Temp	0x0010	9	Read		

Control Center

Operating the Chillgard VRF

Calibration check

A calibration check of the sensor requires a supply of:

- ZERO GAS (air or nitrogen). It may be possible to use ambient air if user is certain it does
- not contain refrigerant gas or an interfering component SPAN GAS Cylinder comprised of refrigerant gas of appropriate concentration

6.1 Calibration Check Procedure

To verify proper sensor operation:

- If the active alarm level is lower than the concentration of calibration gas, please be aware that the relay may activate. You may modify the active alarm level via Modbus or BACnet or you may switch to the alternate alarm level using switch S303-4 (refer to Alarm Level section above).
- If appropriate, deactivate any equipment connected to the outputs, or disconnect the wiring of the outputs.

CAUTION

If any control instruments connected to this detector are wired to external devices (e.g., horns, exhaust fans, and fire suppression systems), these devices may activate during the following procedures. To prevent activating these devices while adjusting this monitor, disconnect the wiring to the control device. Return all wiring to the control device when the calibration procedure is completed.

- With the tubing connected to the regulator and cylinder, place tubing in the opening at the bottom of this unit (see Figure 6).
- 4. Open the regulator and apply gas. This process may take up to five minutes.
- If the unit is operating properly:
 - The Red LED:
 - illuminates when concentration level > Calibration Check level or Active Alarm level
 - is visible through the upper and lower enclosure vents.
 - the relay will activate if the Active Alarm level is exceeded.
- Turn off regulator and remove tubing from opening.
- Allow gas level to return to normal.
- Reactivate any equipment connected to the outputs or reconnect the wiring to the outputs.
- 9. Remember to restore any alarm level settings that may have been changed for the Calibration Check.

REGULATOR Initian Check Gr Calibration Port SPAN OR ZERO GAS CYLINDER 13.3 0.523 42.7 [1.681] 24.5 [0.984] 5 0.197 Einure 5: Installation Dimensions

Figure 6: Applying Calibration Gas

25 LPM

467895

OUTPUT ACTION 4

This detector is factory calibrated and ready for immediate use. Once power is applied, the Red LEDs located at the top and bottom of the unit incluste status.

	START-UP	NORMAL STATE	ALARM	CALIBRATION CHECK	FAULT
LED STATE	Flash at 1 Hz	Flash every 60 seconds	Flash fast at 3 Hz	Flash slow at 0.5Hz (>=50 ppm fixed)	SOLID ON

Lowest Cost of Ownership

- ✓ The Chillgard VRF needs no calibration
 - ✓ Recommended annual bump check to verify response
- ✓ PAIR technology provides:
 - ✓ No need for a zero calibration
 - Minimizes cross-sensitivities compared to other technologies
 - Competition uses semi-conductors which are more vulnerable to cross-sensitivity and require replacement
 - ✓ Minimal maintenance with no moving parts

Chillgard VRF - Ordering

Chillgard VRF

Part Number	Description
10175201	Chillgard VRF, Voltage, Modbus
10175202	Chillgard VRF, Current, Modbus
10175203	Chillgard VRF, Voltage, BACnet
10175204	Chillgard VRF, Current, BACnet

Questions??

Email us at FGFD@MSAsafety.com

MSAsafety.com

THANK YOU!

Send questions to FGFD@MSAsafety.com

MSAsafety.com